Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain
نویسندگان
چکیده
BACKGROUND Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear. RESULTS In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function. CONCLUSION Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.
منابع مشابه
Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors.
One major goal in pain research is to identify novel pain targets. Tissue injury, inflammation, and ischemia are usually accompanied by local tissue acidosis, the degree of associated pain or discomfort well correlated with the magnitude of acidification. Proton-sensing ion channels, transient receptor potential/vanilloid receptor subtype 1, and acid-sensing ion channel 3 are involved in acidos...
متن کاملTDAG8 involved in initiating inflammatory hyperalgesia and establishing hyperalgesic priming in mice
Chronic pain, resulting from injury, arthritis, and cancer, is often accompanied by inflammation. High concentrations of protons found in inflamed tissues results in tissue acidosis, a major cause of pain and hyperalgesia. Acidosis signals may mediate a transition from acute to chronic hyperalgesia (hyperalgesic priming) via proton-sensing G-protein-coupled receptors (GPCRs). The expression of ...
متن کاملProton-sensing G protein-coupled receptor mobilizes calcium in human synovial cells.
Lowered extracellular pH in a variety of tissues is associated with increased tissue destruction and initiation of inflammatory processes. Although the acid-sensing receptors described previously are ion channels, we describe a G protein-coupled proton-sensitive receptor that stimulates Ca(2+) release from intracellular stores in a tumor-derived synoviocyte cell line (SW982) and in primary cult...
متن کاملP 117: Endocannabinoid System as a Novel Therapeutic Target in Epilepsy
Endocannabinoid (ECB) system plays a vital role in responses to stress. Moreover, ECB and its receptors cause anti-inflammatory, anti-oxidative and neuroprotective effects by modulating neuronal, glial and endothelial cell functions. A number of studies have demonstrated ECB system notably defects in neurotraumatic and neurodegenerative diseases like epilepsy, TBI, Alzheimer’s disease and...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular Pain
دوره 5 شماره
صفحات -
تاریخ انتشار 2009